Документ подписан прост Федеральное двосмдар ственное бюджетное образовательное учреждение Информация о владельце: высшего образования

ФИО: Мелешко Людмила Анадданиневосточный государственный университет путей сообщения» Должность: Заместитель директора по учебной работе (ДВГУПС)

Дата подписания: 08.11.2023 09:47:06

Уникальный программный ключ: 7f8c45cds 1313 морский институт железнодорожного транспорта — филиал федерального государственного бюджетного образовательного учреждения высшего образования

«Дальневосточный государственный университет путей сообщения» в г. Уссурийске

(ПримИЖТ – филиал ДВГУПС в г. Уссурийске)

УТВЕРЖДАЮ

Зам. директора по УР ПримИЖТ – филиала ДВГУПС в

г. Уссурийске

___ Мелешко Л.А.

01.06.2023 г.

РАБОЧАЯ ПРОГРАММА

Высшая математика

для специальности 23.05.04 Эксплуатация железных дорог

специализация: Грузовая и коммерческая работа

Составитель: к.п.н., доцент, Квашко Л.П.

Обсуждена на предметно-методической комиссии ФВО

Протокол № 05 от 11.05.2023

Обсуждена на заседании методической комиссии ПримИЖТ

Протокол № 07 от 07.06.2023

Рабочая программа дисциплины Высшая математика

разработана в соответствии с Φ ГОС, утвержденным приказом Министерства образования и науки Российской Федерации от 27.03.2018 № 215

Квалификация инженер путей сообщения

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 15 ЗЕТ

Часов по учебному плану 540 Виды контроля в семестрах:

в том числе: экзамены (семестр) 1, 4

контактная работа 208 зачёты (семестр) 2, 3 РГР 1 сем. (1), 4 сем. (1)

 самостоятельная работа
 260

 часов на контроль
 72

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>)	1 (1.1)	2 (1.2)	3 (2.1)	4 (2.2)		Итого		
Недель	1	8	16	5/6	1	.8	16	16 5/6			
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ	УП	РΠ	УП	РΠ	
Лекции	16	16	16	16	16	16	16	16	64	64	
Практические	32	32	32	32	32	32	32	32	128	128	
Контроль самостоятельной работы	4	4	4	4	4	4	4	4	16	16	
В том числе инт.	10	10	10	10	10	10	6	6	36	36	
Итого ауд.	48	48	48	48	48	48	48	48	192	192	
Контактная работа	52	52	52	52	52	52	52	52	208	208	
Сам. работа	92	92	56	56	56	56	56	56	260	260	
Часы на контроль	36	36					36	36	72	72	
Итого	180	180	108	108	108	108	144	144	540	540	

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Линейная алгебра и аналитическая геометрия. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Интегральное исчисление функций одной переменной. Дифференциальное исчисление функций нескольких переменных. Числовые и функциональные ряды. Кратные, криволинейные и поверхностные интегралы. Векторный анализ и элементы теории поля. Дифференциальные уравнения. Теория вероятностей и математическая статистика.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ						
Код дис	циплины: Б1.О.06						
2.1	Требования к предварительной подготовке обучающегося:						
2.1.1	2.1.1 Знание школьного курса математики						
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:						
2.2.1	Инженерная компьютерная графика						
2.2.2	Физика						
2.2.3	Химия						
2.2.4	Теоретическая механика						
2.2.5	Вычислительная техника и математическое моделирование						
2.2.6	Сопротивление материалов						
2.2.7	Инженерная и компьютерная графика на железнодорожном транспорте						
2.2.8	Инженерная и компьютерная графика						
2.2.9	Математическое моделирование						

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования

Знать:

Основные базовые понятия и методы математи-ческого анализа, аналитической геометрии и линейной алгебры, дифференциального и интегрального исчисления, гармонического анализа, основы теории вероятностей, математической статистики, дискретной математики

Уметь:

Классификацию основных понятий и методов математического анализа, аналитической геометрии и линейной алгебры, дифференциального и интегрального исчисления, гармонического анализа, основы теории вероятностей, математической статистики, дискретной математики, необходимых для решения простейших учебных задач

Владеть:

Методами математического описания физических явлений и процессов, определяющих принципы работы элементарных технических устройств

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1. Линейная алгебра и аналитическая геометрия						
1.1	Лк1. Линейная алгебра. Матрицы. Действия над матрицами, их свойства. Матричные уравнения. Обратная матрица. Определители 2-го и 3-го порядков. Миноры и алгебраические дополнения. Теорема Лапласа. /Лек/	1	2	ОПК-1	Л1.2Л2.5Л3.5 Э1	0	
1.2	Пр1. Действия над матрицами, их свойства. Ранг матрицы. Обратная матрица. /Пр/	1	2	ОПК-1	Л1.2Л2.5Л3.5 Э1	2	Работа в группах
1.3	Пр2.Вычисление определителей 2-го и 3-го порядков. Применение Теоремы Лапласа. /Пр/	1	2	ОПК-1	Л1.2Л2.5Л3.5 Э1	2	Работа в группах

1.4	Лк2.Классификация СЛАУ. Методы	1	2	ОПК-1	Л1.2Л2.5Л3.5	0	
	решения СЛАУ: Гаусса, Крамера, матричный. /Лек/				Э1		
1.5	Пр3. Решение СЛАУ матричным методом. Методом Крамера. /Пр/	1	2	ОПК-1	Л1.2Л2.5Л3.5 Э1	2	Работа в группах
1.6	Пр4. Решение СЛАУ методом Гаусса. /Пр/	1	2	ОПК-1	Л1.2Л2.5Л3.5 Э1	2	Работа в группах
1.7	Лк3.Прямая линия на плоскости: различные виды уравнений прямой. Расстояние от точки до прямой. /Лек/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	2	Активное слушание
1.8	Пр5.Векторы и действия над ними. Скалярное, векторное и смешанное произведение векторов и их геометрический смысл. /Пр/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
1.9	Прб. Прямая линия на плоскости: различные виды уравнений прямой. /Пр/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
1.10	Лк4.Линии второго порядка: окружность, эллипс, гипербола, парабола и их канонические уравнения. /Лек/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
1.11	Пр7. Окружность, эллипс. Канонические уравнения, построение. /Пр/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
1.12	Пр8.Гипербола, парабола. Канонические уравнения, построение. /Пр/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
1.13	Лк5. Прямая и плоскость в пространстве. Взаимное расположение плоскостей и прямых. Угол между плоскостями и прямыми. Расстояние от точки до прямой и плоскости, между двумя прямыми. /Лек/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
1.14	Пр9.Прямая и плоскость в пространстве. Виды уравнения плоскости и прямой в пространстве. /Пр/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
1.15	Пр10.Взаимное расположение плоскостей и прямых. Угол между плоскостями и прямыми. /Пр/	1	2	ОПК-1	Л1.2Л2.6Л3.5 Э1	0	
	Раздел 2. Введение в математический анализ						
2.1	Лкб. Функция. Способы задания функции. График функции. Элементарные функции и их классификация. /Лек/	1	2	ОПК-1	л1.2л2.3л3.1 Э1	0	
2.2	Лк7.Предел функции в точке и на бесконечности. Свойства пределов. Бесконечно малые и бесконечно большие функции. Первый и второй замечательные пределы. Эквивалентные функции. /Лек/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
2.3	Пр11.Построение графиков функций с помощью элементарных преобразований. /Пр/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
2.4	Пр12.Область определения и свойства функций. /Пр/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
2.5	Пр13. Вычисление пределов (раскрытие неопределенностей) /Пр/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	

2.6	Пр14. Вычисление пределов с помощью первого и второго замечательных пределов. Эквивалентные функции /Пр/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
2.7	Лк8.Непрерывность функции в точке и на множестве. Свойства непрерывных функций. Односторонняя непрерывность. Точки разрыва, их классификация. Свойства функций, непрерывных на отрезке /Лек/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
2.8	Пр15.Непрерывность функции в точке и на множестве. Свойства непрерывных функций. /Пр/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
2.9	Пр16.Точки разрыва, их классификация. Свойства функций, непрерывных на отрезке /Пр/	1	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 3. Дифференциальное исчисление функции одной переменной						
3.1	Л1.Производная функции, ее свойства. Производнае элементарных функций. Производная сложной, обратной, неявной, параметрически заданной функций. Логарифмическое дифференцирование. Дифференциал функции. /Лек/	2	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
3.2	Пр1.Вычисление производной элементарных функций /Пр/	2	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
3.3	Пр2.Нахождение производной сложной, обратной, неявной, параметрически заданной функций. Логарифмическое дифференцирование. /Пр/	2	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
3.4	Л2. Раскрытие неопределенностей (правила Лопиталя). Приближенные вычисления с помощью дифференциала. Монотонность функции. Точки экстремума. Выпуклость функции. Точки перегиба. Асимптоты функции. Наибольшее и наименьшее значения функции на отрезке. /Лек/	2	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
3.5	Пр3.Применение правила Лопиталя, применение понятия дифференциала к приближённым вычислениям. /Пр/	2	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
3.6	Пр4.Исследование функций на монотонность. Исследование функций на выпуклость-вогнутость, определение асимптот, наибольшего и наименьшего значения функции на отрезке. /Пр/	2	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 4. Интегральное исчисление функции одной переменной						
4.1	ЛЗ.Первообразная. Неопределенный интеграл, его свойства. Основные методы интегрирования (замена переменной и интегрирования по частям). Интегрирование рациональных дробей. /Лек/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	

4.2	Пр5. Вычисление неопределённого интеграла с применением таблицы интегралов /Пр/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
4.3	Прб. Вычисление интеграла заменой переменной и по частям /Пр/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1	0	
4.4	Л4.Интегрирование тригонометрических выражений. Интегрирование некоторых иррациональных функций. Тригонометрические подстановки. /Лек/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
4.5	Пр7. Вычисление интеграла от рациональных функций. Метод неопределённых коэффициентов. /Пр/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
4.6	Пр8. Вычисление интеграла от иррациональных функций и тригонометрических выражений /Пр/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
4.7	Л5. Задача о площади криволинейной трапеции. Определенный интеграл, его свойства. Формула Ньютона-Лейбница. Методы интегрирования (по частям и подстановкой). Несобственные интегралы первого и второго рода, их свойства. Признаки сходимости несобственных интегралов. /Лек/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	2	Активное слушание
4.8	Пр9. Вычисление определённого интеграла методом подстановки и по частям /Пр/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
4.9	Пр10. Геометрические приложения определённого интеграла. Вычисление несобственных интегралов. /Пр/	2	2	ОПК-1	Л1.2Л2.1 Л2.2 Л2.3Л3.1 Э1	0	
4.10	Лб. Комплексные числа. Формы записи. Действия над комплексными числами в алгебраической, тригонометрической и показательной форме /Лек/	2	2	ОПК-1	Л1.2Л2.2Л3.1 Э1	0	
4.11	Пр11. Действия над комплексными числами в алгебраической форме /Пр/	2	2	ОПК-1	Л1.2Л2.2Л3.1 Э1	0	
4.12	Пр12. Действия над комплексными числами в тригонометрической и показательной форме /Пр/	2	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 5. Дифференциальные уравнения						
5.1	Л7.Дифференциальные уравнения первого порядка. Уравнения с разделяющимися переменными и сводящиеся к ним. Линейные уравнения и уравнение Бернулли. /Лек/	2	2	ОПК-1	Л1.2Л2.7Л3.2 Э1	0	
5.2	Пр13. Решение уравнений первого порядка /Пр/	2	2	ОПК-1	Л1.2Л2.7Л3.2 Э1	2	Работа в группах
5.3	Пр14.Решение линейных уравнений первого порядка и уравнений Бернулли /Пр/	2	2	ОПК-1	Л1.2Л2.7Л3.2 Э1	2	Работа в группах

5.4	Л8.Дифференциальные уравнения высших порядков, допускающие понижение порядка. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. /Лек/	2	2	ОПК-1	л1.2л2.7л3.2 Э1	0	
5.5	Пр15.Решение ДУ, допускающих понижение порядка /Пр/	2	2	ОПК-1	Л1.2Л2.7Л3.2 Э1	2	Работа в группах
5.6	Пр16.Решение ДУ второго порядка с постоянными коэффициентами. /Пр/	2	2	ОПК-1	Л1.2Л2.7Л3.2 Э1	2	Работа в группах
	Раздел 6. Функция нескольких переменных						
6.1	Лк1.Функции нескольких переменных. Область определения ФНП. Частное и полное приращение функции. Частные производные. Дифференциал функции нескольких переменных. Локальный экстремум функции нескольких переменных. Необходимое и достаточное условие экстремума. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.2 Э1	0	
6.2	Пр1. Функции нескольких переменных. Область определения ФНП. Линии уровня. Частные производные. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
6.3	Пр2. Дифференциал функции нескольких переменных. Частные производные и дифференциалы высших порядков. Локальный экстремум функции нескольких переменных. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 7. Кратные, криволинейные и поверхностные интегралы						
7.1	Лк2. Двойной интеграл, его свойства. Вычисление в декартовых и полярных координатах. Тройной интеграл в декартовых координатах. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.2	Пр3. Двойной интеграл, его свойства. Вычисление в декартовых и полярных координатах. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.3	Пр4.Вычисление тройного интеграла в декартовых координатах. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.4	Лк3.Криволинейные интегралы первого и второго рода, свойства. Способы вычисления. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.5	Пр5.Вычисление криволинейных интегралов первого рода. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.6	Прб.Вычисление криволинейных интегралов второго рода. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.7	Лк4.Поверхностные интегралы первого и второго рода. Свойства. Способы вычисления. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.8	Пр7.Вычисление поверхностных интегралов первого рода. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
7.9	Пр8.Вычисление поверхностных интегралов второго рода. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 8. Векторный анализ и элементы теории поля						

8.1	Лк5. Скалярное поле. Производная по направлению. Градиент. Векторное поле. Поток векторного поля. Дивергенция, циркуляция, ротор векторного поля. Формулы Остроградского-Гаусса и Стокса. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
8.2	Пр9.Производная по направлению. Градиент. Поток векторного поля. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	2	Работа в группах
8.3	Пр10. Вычисление дивергенции, циркуляции, ротора векторного поля. Применение формулы Остроградского-Гаусса и Стокса. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Э1	0	
	Раздел 9. Числовые и функциональные ряды						
9.1	Лкб. Числовые ряды. Сходимость и сумма ряда. Признаки сходимости ряда. Свойства сходящихся рядов. Знакопеременные числовые ряды. Абсолютная и условная сходимость. Признак Лейбница. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	0	
9.2	Пр11. Исследование сходимости положительных числовых рядов, вычисление суммы ряда. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	2	Работа в группах
9.3	Пр12. Исследование знакопеременных числовых рядов. Применение признака Лейбница. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	2	Работа в группах
9.4	Лк7. Степенные ряды. Теорема Абеля. Область сходимости, радиус сходимости степенного ряда. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	0	
9.5	Пр13. Исследование степенных рядов на сходимость. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	2	Работа в группах
9.6	Пр14.Теорема Абеля. Область сходимости, радиус сходимости степенного ряда. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	0	
9.7	Лк8. Разложение функций в ряды Тейлора и Маклорена. Гармонические колебания. Тригонометрический ряд Фурье. Теорема Дирихле. /Лек/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	2	Работа в группах
9.8	Пр15.Разложение функций в ряды Тейлора и Маклорена /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	0	
9.9	Пр16. Вычисление коэффициентов ряда Фурье. /Пр/	3	2	ОПК-1	Л1.2Л2.3Л3.1 Л3.3 Л3.5 Э1	0	
	Раздел 10. Теория вероятностей						
10.1	Л1.Основные понятия теории вероятностей. Классическое, геометрическое и статистическое определения вероятности. Алгебра событий. Основные комбинаторные соединения. /Лек/	4	2	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
10.2	Пр1. Решение задач на вычисление вероятности случайных событий. Решение комбинаторных задач и их применение к вычислению вероятностей /Пр/	4	4	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
10.3	Л2.Полная вероятность, вероятность гипотез. Формула Байеса. /Лек/	4	2	ОПК-1	Л1.1Л2.4 Л2.7Л3.1 Л3.4 Л3.5 Э2	0	

10.4	Пр2. Решение задач на вычисление полной вероятности и вероятности гипотез. /Пр/	4	4	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
10.5	Л3. Повторные испытания: формулы	4	2	ОПК-1	Л1.1Л2.4	0	
	Бернулли, Пуассона, Муавра-Лапласа, поток событий, отклонение относительной частоты от вероятности. Закон больших чисел (неравенство Чебышева, теоремы Чебышева и Бернулли). /Лек/				Л2.7Л3.4 Л3.5 Э2		
10.6	Пр3. Решение задач на применение формулы Бернулли, Пуассона, Муавра-Лапласа, вероятности потока событий, отклонения относительной частоты от вероятности. Неравенство Чебышева. /Пр/	4	4	ОПК-1	Л2.4 Л2.7Л3.4 Л3.5 Э2	2	Работа в группах
10.7	Л4.Дискретные случайные величины, способы задания, законы распределения. Числовые характеристики ДСВ, их свойства. /Лек/	4	2	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
10.8	Пр4. Решение задач на вычисление числовых характеристик ДСВ. /Пр/	4	4	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
10.9	Л5. Непрерывные случайные величины (НСВ). Функция распределения вероятностей и функция плотности распределения СВ. Законы распределения НСВ. Числовые характеристики НСВ. /Лек/	4	2	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
10.10	Пр5. Решение задач на вычисление функции распределения вероятностей и функции плотности распределения СВ. Вычисление числовых характеристик НСВ. /Пр/	4	4	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
	Раздел 11. Статистические методы обработки экспериментальных данных						
11.1	Л6.Выборочный метод. Выборка. Вариационный ряд. Эмпирическая и теоретическая функции распределения. Полигон и гистограмма частот. /Лек/	4	2	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
11.2	Прб.Решение задач на вычисление функции распределения. Построение гистограмм и полигона частот. /Пр/	4	4	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	2	Работа в группах
11.3	Пр7. Вычисление точечных и интервальных оценок параметров распределения. /Пр/	4	4	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	2	Работа в группах
11.4	Л7.Точечные и интервальные оценки параметров распределения. /Лек/	4	2	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
	Раздел 12. Статистическое оценивание и проверка гипотез						
12.1	Л8.Статистическое оценивание и проверка гипотез о виде распределения. Критерий согласия Пирсона. /Лек/	4	2	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	

	I an						1
12.2	Пр8.Решение задач по проверке статистических гипотез. Применение критерия согласия Пирсона. /Пр/	4	4	ОПК-1	Л1.1Л2.4 Л2.7Л3.4 Л3.5 Э2	0	
	Раздел 13. Самостоятельная работа						
13.1	Выполнение расчётно-графической работы по теме "Линейная алгебра" /Ср/	1	10	ОПК-1	Л1.1 Л1.2Л2.5Л3.4 Л3.5 Э1 Э2	0	
13.2	Подготовка к лекциям и практическим занятиям /Cp/	1	48	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.3	Выполнение домашних заданий /Ср/	1	34	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.4	Подготовка к лекциям и практическим занятиям /Cp/	2	48	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.5	Выполнение домашних заданий /Ср/	2	8	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.6	Выполнение домашних заданий /Ср/	3	8	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.7	Подготовка к лекциям и практическим занятиям /Cp/	3	48	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.8	Выполнение расчётно-графической работы по теме "Теория вероятностей" /Ср/	4	10	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.9	Подготовка к лекциям и практическим занятиям /Cp/	4	20	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
13.10	Выполнение домашних заданий /Ср/	4	26	ОПК-1	Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	0	
	Раздел 14. Контроль						
	1 aspen 17, Routhoup						

14.1	Экзамен /Экзамен/	1	36	ОПК-1	Л1.1 Л1.2Л2.4 Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	
14.2	Экзамен по теме "Теория вероятностей и математическая статистика" /Экзамен/	4	36	ОПК-1	Л1.1 Л1.2Л2.5 Л2.6Л3.4 Л3.5 Э1 Э2	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Размещены в приложении

6	. УЧЕБНО-МЕТОЛИЧ	ІЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС	ЭПИПЛИНЫ (МОЛУЛЯ)					
	· · · iEBiio METOGII	6.1. Рекомендуемая литература						
	6.1.1. Перечен	ь основной литературы, необходимой для освоения дисци	плины (модуля)					
	Авторы, составители	Заглавие	Издательство, год					
Л1.1	Колемаев В. А., Калинина В. Н.	Теория вероятностей и математическая статистика	Москва: Юнити-Дана, 2015, http://biblioclub.ru/index.php? page=book&id=436721					
Л1.2	Н.Ш. Кремер	Высшая математика для экономистов	Москва: Юнити-Дана, 2015, http://biblioclub.ru/index.php? page=book&id=114541					
	6.1.2. Перечень до	полнительной литературы, необходимой для освоения ди	сциплины (модуля)					
	Авторы, составители	Заглавие	Издательство, год					
Л2.1	Виноградова П.В., Королева Т.Э.	Интегральное исчисление функции одной переменной: учебное пособие	Хабаровск: Изд-во ДВГУПС, 2014,					
Л2.2	Виноградова П.В., Королева Т.Э.	Математический анализ: интегралы: учебное пособие	Хабаровск: Изд-во ДВГУПС, 2015,					
Л2.3	Виноградова, Королёва П.В., Т.Э.	Математический анализ: Учебное пособие	Хабаровск: Изд-во ДВГУПС, 2015,					
Л2.4	Калинина В.Н.	Теория вероятностей и математическая статистика	Москва: "Издательство Юрайт", 2016,					
Л2.5	Квашко Л.П.	Основы линейной алгебры: учеб. пособие	Хабаровск: Издательство ДВГУПС, 2012,					
Л2.6	Квашко Л.П.	Основы векторной алгебры и аналитической геометрии на плоскости: учеб. пособие	Хабаровск: Изд-во ДВГУПС, 2020,					
Л2.7	Квашко Л.П.	Обыкновенные дифференциальные уравнения и способы их решения: учебное пособие	Хабаровск: Изд-во ДВГУПС, 2021,					
6.1	.3. Перечень учебно-ме	стодического обеспечения для самостоятельной работы об (модулю)	учающихся по дисциплине					
	Авторы, составители	Заглавие	Издательство, год					
Л3.1	Якунина М.И., Гамалей В.Г.	Дифференциальное исчисление функций одной переменной: метод. пособие	Хабаровск: Изд-во ДВГУПС, 2011,					
Л3.2	Гамоля Л.Н., Ющенко Н.Л.	Дифференциальные уравнения: метод. пособие по выполнению расчетно-графической работы	Хабаровск: Изд-во ДВГУПС, 2014,					
Л3.3	Городилова М.А.	Ряды. Приложения рядов: метод. пособие по решению задач	2016,					
Л3.4	Городилова М.А., Ушакова Г.А.	Теория вероятностей и математическая статистика: метод. пособие по выполнению контрольных работ	Хабаровск: Изд-во ДВГУПС, 2016,					
Л3.5	Виноградова П.В., Ющенко Н.Л.	Основы высшей математики: линейная алгебра и аналитическая геометрия: сб. задач	Хабаровск: Изд-во ДВГУПС, 2019,					
6.2.	6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)							
Э1	: Юнити-Дана, 2015	тика: учебник / Б.Т. Кузнецов 2-е изд., перераб. и доп М. 719 с.: ил., табл., граф (Высшее профессиональное ка и управление) Библиогр. в кн ISBN 5-238-00754-Х; То	page=book&id=114717					

Э2 Колемаев, В.А. Теория вероятностей и математическая статистика: учебник / В.А. Колемаев, В.Н. Калинина. - М.: Юнити-Дана, 2015. - 352 с.: табл. - ISBN 5-238-00560-1; То же [Электронный ресурс]

//biblioclub.ru/index.php? page=book&id=436721

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

6.3.1 Перечень программного обеспечения

Windows XP - Операционная система, лиц. 46107380

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

7. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)		
Аудитория	Назначение	Оснащение
Аудитория № 814 Кабинет теории механизмов и	Учебная аудитория для проведения занятий лекционного типа, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы	Программное обеспечение: Місгозоft Windows XP (Сведения об Open License 44290841) Місгозоft Office Professional Plus 2007 (Сведения об Open License 66234276); Казрегѕку Endpoint Security 8 (№ лицензии 1356-160615-113525-730-94); Foxit Reader . Доска аудиторная; компьютер Intel(R) Core(TM) i3-3210 CPU @ 3.20GHz/2GB/ 500Gb/DVD-RW/Монитор Acer 19. Интерактивная доска НІТАСНІ FX-TRIO-77-Е; проектор Nec V300X.;стенд балан-сировочный; макеты зубчатых передач; редукторы (разл.типов).

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

С целью эффективной организации учебного процесса учащимся в начале семестра предоставляется учебно-методическое и информационное обеспечение, приведенное в данной рабочей программе.

В процессе обучения студенты должны, в соответствии с планом выполнения самостоятельных работ (табл. приложения), изучать теоретический материал по предстоящему занятию и формулировать вопросы, вызывающие у них затруднения для рассмотрения на лекционном или практическом занятии.

Для рационального распределения времени обучающегося по разделам дисциплины и по видам самостоятельной работы студентам предоставляется план лекций и практических занятий по дисциплине, а также учебно-методическое и информационное обеспечение, приведенное в данной рабочей программе.

В процессе обучения студенты должны усвоить научные основы предстоящей деятельности, научиться управлять развитием своего мышления. С этой целью они должны освоить различные алгоритмы мышления. Алгоритмы развития мышления выстраиваются так, чтобы знания (закон, закономерность, определение, вывод, правило и т. д.) могли применяться при выполнении заданий (решении задач).

Выделяют следующие способы построения алгоритма:

- а) из одного понятия:
- выделить существенные признаки понятия,
- определить взаимосвязь признаков между собой,
- установить последовательность наложения признаков на конкретный пример;
- б) при комбинировании нескольких понятий:
- построить алгоритмы применения каждого понятия,
- сравнить алгоритмы (выделить общие и специфические признаки),
- определить взаимосвязь признаков между собой,
- установить последовательность наложения признаков на конкретный при-мер.

Алгоритм проведения анализа:

- 1) выделить в понятии все признаки предмета или явления (физические, химические свойства и отношения);
- 2) определить существенные признаки;
- 3) выделить несущественные признаки.

Алгоритм проведения синтеза:

- 1) определить все признаки, характеризующие предмет или явление;
- 2) выделить из них существенные, принадлежащие предмету или явлению, без которых последнее теряет свой смысл;
- 3) соотнести имеющиеся признаки с признаками известных понятий или ввести новое понятие.

Алгоритм проведения сравнения (сравнительный анализ предполагает проведение анализа каждого понятия и сравнения их между собой):

- 1) провести анализ сравниваемых понятий:
- выделить в понятии все признаки предмета или явления (физические, химические свойства и отношения);
- определить существенные признаки;
- выделить не существенные признаки;

- 2) определить существенные и несущественные признаки;
- 3) сделать вывод:
- о полном совпадении понятий (если одинаковы все признаки)
- частичном совпадении понятий (если совпадение признаков частичное);
- несовпадении понятий (если нет одинаковых признаков).

Алгоритм обобщения:

- 1) разложить каждое из понятий на существенные признаки;
- 2) определить общие для всех понятий существенные признаки;
- 3) дать (сформулировать) обобщение на основе этих признаков;
- 4) найти (если существует) обобщающее понятие.

Алгоритм свертывания знаний:

- 1) разложить каждое из понятий на существенные признаки;
- 2) определить общие для понятий существенные признаки— для всех понятий (родовые признаки)— для отдельных групп понятий (видовые признаки);
- 3) дать (сформулировать) обобщение на основе этих признаков;
- 4) найти (если существует) обобщающее понятие;
- 5) определить основные взаимосвязи между понятиями совпадение, включение, соподчинения, противоположность, противоречие;
- 6) на основе выделенных взаимосвязей представить данную совокупность в виде схемы, графика, рисунка, таблицы. В результате обучения студенты должны иметь опыт как разработки алгоритма применения знаний, так и способности его применения при выполнении заданий по курсу теории.

В педагогике различают несколько моделей обучения:

- 1. Пассивная обучаемый выступает в роли «объекта» обучения (слушает и смотрит);
- 2. Активная обучаемый выступает «субъектом» обучения (самостоятельная работа, творческие задания);
- 3. Интерактивная взаимодействие. Использование интерактивной модели обучения предусматривают моделирование жизненных ситуаций, использование ролевых игр, совместное решение проблем. Исключается доминирование какого-либо участника учебного процесса или какой-либо идеи. Из объекта воздействия студент становится субъектом взаимодействия, он сам активно участвует в процессе обучения, следуя своим индивидуальным маршрутом. Интерактивные формы обучения: * Деловые и ролевые игры;
- * Психологические и иные тренинги;
- * Групповая, научная дискуссия, диспут;
- * Дебаты;
- * Кейс-метод;
- * Метод проектов;
- * Мозговой штурм,
- * Портфолио;
- * Семинар в диалоговом режиме (семинар диалог);
- * Разбор конкретных ситуаций;
- Метод работы в малых группах (результат работы студенческих исследовательских групп);
- * Круглые столы;
- * Вузовские, межвузовские видео телеконференции;
- * Проведение форумов;
- * Компьютерные симуляции;
- * Компьютерное моделирование и практический анализ результатов;
- * Презентации на основе современных мультимедийных средств;
- * Интерактивные лекции;
- * Лекция пресс-конференция;
- * Бинарная лекция (лекция вдвоем);
- * Лекция с заранее запланированными ошибками;
- * Проблемная лекция.
- В процессе преподавания дисциплины «Математика» применяются следующие интерактивные формы обучения:
- 1. Лекция с заранее запланированными ошибками позволяет развить у обучаемых умение оперативно анализировать профессиональные ситуации, выступать в роли экспертов, оппонентов, рецензентов, выделять неверную и неточную информацию.
- 2. Работа в малых группах это одна из самых популярных стратегий, так как она дает всем обучающимся возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения (в частности, умение активно слушать, вырабатывать общее мнение, разрешать возникающие разногласия).

АКТИВНЫЕ И ИНТЕРАКТИВНЫЕ ФОРМЫ И МЕТОДЫ ОБУЧЕНИЯ

Одним из дидактических средств, обладающих значительным развивающим потенциалом, является мультимедиа, позволяющая использовать текст, графику, видео и мультипликацию в режиме диалога, что расширяет области применения компьютера в учебном процессе. Появляется возможность совмещать теоретический и демонстрационный

материалы. Тестовые задания уже не ограничиваются словесной формулировкой, но и могут представлять собой целый видеосюжет.

В образовательном процессе активно применяются мультимедийные технологии как средства при проведении различного

типа занятий. В процессе чтения лекций применяются презентации, содержащие различные виды информации: текстовую, звуковую, графическую, анимации. Большую популярность приобрели электронные учебники, где представлен достаточно широкий арсенал мультимедийных средств, что не идет в сравнение с использованием обычных «бумажных» учебников. Кроме того, электронный учебник является одним из инструментов самостоятельной подготовки обучаемого по предмету. Мультимедийные технологии должны соответствовать целям и задачам курса обучения и органически вписываться в учебный процесс.

Использование информационных технологий на занятиях по математике стимулирует познавательную активность студентов, облегчает восприятие новой информации, делает более успешным запоминание материала, основанного на динамичных зрительных образах, развивает пространственное воображение и умение логически мыслить.

Метод - это сочетание способов и форм обучения, направленных на достижение определенной цели обучения.

Активные методы

Активные методы - это способы активизации учебно-познавательной деятельности студентов, которые побуждают их к активной мыслительной и практической деятельности в процессе овладения материалом, когда активен не только преподаватель, но активны и студенты.

Активные методы обучения позволяют решить три учебно-организационные задачи:

- 1) подчинить процесс обучения управляющему воздействию преподавателя;
- 2) обеспечить активное участие в учебной работе как подготовленных студентов, так и не подготовленных;
- 3) установить непрерывный контроль за процессом усвоения учебного материала.

Активные методы: неимитационные, имитационные (классификация А.М. Смолкина):

Неимитационные:

- 1) проблемная лекция, лекция вдвоём, лекция с заранее запланированными ошибками, лекция пресс-конференция; 2) эвристическая беседа; 3) поисковая лабораторная работа студента; 4) учебная дискуссия;
- 5) самостоятельная работа с литературой; 6) семинары;

Имитационные: игровые, неигровые.

Игровые: 1) деловая игра; 2) педагогические ситуации; 3) педагогические задачи; 4) ситуация инсценирования различной деятельности.

Неигровые: 1) коллективная мыслительная деятельность; 2) ТРИЗ работа.

Методы активного обучения могут использоваться на различных этапах учебного процесса

1 этап – первичное овладение знаниями. Это могут быть проблемная лекция, эвристическая беседа, учебная дискуссия и т.д. 2 этап – контроль знаний (закрепление), могут быть использованы такие методы как коллективная мыслительная деятельность, тестирование и т.д.

3 этап – формирование профессиональных умений, навыков на основе знаний и развитие творческих способностей, возможно использование моделированного обучения, игровые и неигровые методы.

Интерактивные методы

Интерактивное обучение построенно на взаимодействии всех обучающихся, включая педагога. Эти методы наиболее соответствуют личностно ориентированному подходу, так как они предполагают коллективное, обучение в сотрудничестве, причем и обучающийся и педагог являются субъектами учебного процесса. Педагог чаще выступает лишь в роли организатора процесса обучения, лидера группы, создателя условий для инициативы учащихся. Интерактивное обучение основано на прямом взаимодействии учащихся со своим опытом и опытом своих друзей, так как большинство интерактивных упражнений обращается к опыту самого учащегося, причем не только учебному. Новое знание, умение формируется на основе такого опыта.

Классификация интерактивных методов обучения

- 1. Творческие задания,
- 2. Работа в малых группах,
- 3. Обучающие игры:
- 1) ролевые, 2) деловые, 3) образовательные,
- 4. Использование общественных ресурсов
- 1) приглашение специалиста, 2) экскурсии,
- 5. Социальные проекты: 1) соревнования, 2)выставки, спектакли и т.д.
- 6. Разминки (различного рода),
- 7. Изучение и закрепление нового информационного материала:
- 1) интерактивная лекция,
- 2) ученик в роли учителя,
- 3) работа с наглядным посо-бием,
- 4) каждый учит каждого,
- 5) использование и анализ видео-, аудио-материалов, 6) практическая задача, 7) кейс-метод; 8) разбор ситуаций из практики участника,
- 8. Работа с документами: 1) составление документов, 2) письменная работа по обоснованию своей позиции,
- 9. Обсуждение сложных и дискуссионных проблем
- 10. Тестирование, экзамен с последующим анализом результатом

В практике преподавания дисциплин математического цикла применяются интерактивные формы обучения, которые обеспечивают педагогическое взаимодействие преподавателя и студентов.

Для решения воспитательных и учебных задач используются следующие интерактивные формы: интерактивная экскурсия;

использование кейс - технологий; проведение видеоконференций; круглый стол; мозговой штурм; дебаты; фокус – группа; деловые и ролевые игры; анализ конкретных практических ситуаций; учебные групповые дискуссии; тренинги. Умелое применение методов и приемов активной и интерактивной форм проведения занятий позволяет формировать познавательный интерес обучающихся с целью достижения определенных учебно-воспитательных целей и выполнения образовательных задач.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья:

- 1) учебно-методические материалы для самостоятельной работы предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации;
- 2) для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом, в форме электронного документа, в форме аудиофайла;
- 3) для лиц с нарушениями слуха: в печатной форме, в форме электронного документ;
- 4) для лиц с нарушениями опорно-двигательного аппарата: в печатной форме, в форме электронного документа, в форме аудиофайла.

Примечание: данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Предусматривается обеспечение обучающихся инвалидов и лиц с ограниченными возможностями здоровья печатными и электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Подбор и разработка учебных материалов производится с учетом заболевания: для студентов с нарушениями слуха информация предоставляется визуально, с нарушениями зрения - аудиально, например, с использованием программ-синтезаторов речи или с помощью тифло-информационных устройств. Для освоения дисциплины используются лекционные аудитории, оснащенные досками для письма, мультимедийное оборудование: проектор, проекционный экран.

Для проведения семинарских (практических) занятий - мультимедийное оборудование: проектор, проекционный экран. Освоение дисциплины инвалидами и лицами с ограниченными возможностями здоровья осуществляется с использованием средств обучения общего и специального назначения: 1)лекционная аудитория: мультимедийное оборудование, источники питания для индивидуальных технических средств; 2)учебная аудитория для практических занятий (семинаров)-мультимедийное оборудование; 3)аудитория для самостоятельной работы: стандартные рабочие места с персональными компьютерами. В каждой аудитории предусмотрено соответствующее количество мест для обучающихся с учетом ограничений их здоровья.

Для обучающихся инвалидов и лиц с ограниченными возможностями здоровья предусмотрено обслуживание по межбиблиотечному абонементу (МБА) с Хабаровской краевой специализированной библиотекой для слепых. По запросу пользователей НТБ инвалидов по зрению, осуществляется информационно-библиотечное обслуживание, доставка и выдача для работы в читальном зале книг в специализированных форматах для слепых.

Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Направление подготовки / специальность: Эксплуатация железных дорог

Профиль / специализация: Грузовая и коммерческая работа, Магистральный транспорт, Пассажирский ком-

плекс железнодорожного транспорта, Транспортный бизнес и логистика

Дисциплина: Высшая математика

Формируемые компетенции: ОПК-1

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект оценки	Уровни сформированности компетенций	Критерий оценивания результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень Высокий уровень	Уровень результатов обучения не ниже порогового

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

Достигнутый уровень результата обучения	Характеристика уровня сформированности компетенций	Шкала оценивания Экзамен или зачет с оценкой
Низкий уровень	Обучающийся:	Неудовлетворительно
Пороговый уровень	Обучающийся:	Удовлетворительно
Повышенный уровень	Обучающийся:	Хорошо

Высокий уровень	Обучающийся: -обнаружил всесторонние, систематические и глубокие знани учебно-программного материала; -умеет свободно выполнять задания, предусмотренные про граммой; -ознакомился с дополнительной литературой; -усвоил взаимосвязь основных понятий дисциплин и их зна чение для приобретения профессии; -проявил творческие способности в понимании учебно- про граммного материала.	Отлично
--------------------	---	---------

Описание шкал оценивания Компетенции обучающегося оценивается следующим образом:

Планируемый			е шкалы оценивания овня результата обуче	
уровень результатов освоения	Неудовлетворительно Не зачтено	Удовлетворительно Зачтено	Хорошо Зачтено	Отлично Зачтено
Знать	ющегося самостоя- тельно продемонстри- ровать наличие знаний при решении заданий, которые были пред- ставлены преподавате- лем вместе с образцом	продемонстрировать наличие знаний при решении заданий, которые были представ-	монстрирует спо- собность к самосто- ятельному приме- нению знаний при решении заданий, аналогичных тем, которые представ-	поддержке в части междисциплинарных связей.
Уметь	щегося самостоятельности в применении умений по использованию методов освое-	тельность в применении умений решения учебных заданий в полном соответствии с	демонстрирует са- мостоятельное при- менение умений решения заданий, аналогичных тем, которые представ- лял преподаватель,	стрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.
Владеть	стоятельно проявить навык решения по- ставленной задачи по	тельность в применении навыка по заданиям, решение которых	монстрирует само- стоятельное приме- нение навыка реше- ния заданий, анало- гичных тем, кото- рые представлял преподаватель, и	или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей

2. Перечень вопросов и задач к экзаменам.

Примерный перечень вопросов к экзамену. 1 семестр.

Компетенция ОПК-1:

- 1. Понятие системы координат на плоскости и в пространстве.
- 2. Прямая на плоскости. Различные виды уравнений прямой.
- 3. Угол между прямыми.
- 4. Взаимное расположение прямых на плоскости.
- 5. Кривые второго порядка: определение, классификация.
- 6. Эллипс.
- 7. Окружность.
- 8. Гипербола.
- 9. Парабола.
- 10. Приведение общего уравнения кривых к каноническому виду.
- 11. Матрицы, виды матриц, действия с ними.
- 12. Определитель квадратной матрицы, его свойства и вычисления.
- 13. Миноры и алгебраические дополнения элементов матрицы. Теорема о разложении определителя по строке или столбцу.
- 14. Невырожденные матрицы.
- 15. Обратная матрица и способы её составления.
- 16. Решение матричных уравнений.
- 17. Понятие ранга матрицы, способы его вычисления.
- 18. Системы линейных алгебраических уравнений и методы их решения (Крамера, Гаусса, матричный).
- 19. Вектор. Линейные операции с векторами и их свойства.
- 20. Скалярное, векторное и смешанное произведения векторов, их геометрические приложения.
- 21. Плоскость и прямая на плоскости и в пространстве. Различные уравнения плоскости и прямой, угол между ними, их взаимное расположение.
- 22. Функция, способы задания и свойства.
- 23. Основные элементарные функции.
- 24. Основные теоремы о пределах.
- 25. Предел функции на бесконечности.
- 26. Бесконечно малые и бесконечно большие функции, их свойства и взаимосвязь.
- 27. Первый и второй замечательные пределы и их следствия.
- 28. Непрерывность функции в точке.
- 29. Непрерывность основных элементарных функций.
- 30. Точки разрыва и их классификация.
- 31. Определение и свойства функции, непрерывной на отрезке.

Примерный перечень вопросов к зачёту. 2 семестр.

Компетенция ОПК-1:

- 1. Производная функции в точке и её геометрический смысл. Касательная к кривой y = f(x) и её уравнение в точке x_o . Физический смысл производной.
- 2. Связь непрерывности и дифференцируемости функции в точке. Приведите примеры дифференцируемых функций. Производные высших порядков. Механический смысл производной второго порядка.
- 3. Порядок вычисления производной функции по определению на языке «приращения».
- 4. Правила дифференцирования функций. Правило дифференцирования сложной функции.
- 5. Производная показательной и логарифмической функции.
- 6. Производная степенной и степенно-показательной функции.
- 7. Теорема о дифференцировании обратной функции. Производная тригонометрических и обратным им функций.
- 8. Дифференциал функции. Свойства дифференциала функции. Инвариантность формы дифференциала. Понятие о дифференциалах высших порядков.
- 9. Основные теоремы дифференциального исчисления (теоремы Ферма, Ролля, Лагранжа).
- 10. Правило Лопиталя и его применение.
- 11. Возрастающая и убывающая функция. Необходимое и достаточное условие монотонности функции на промежутке.
- 12. Точки максимума и точки минимума функции. Экстремумы функции. Локальный минимум (максимум) и глобальный минимум (максимум) функции.
- 13. Необходимое условие экстремума функции. Первое и второе достаточное условие экстремума функции. Порядок нахождения экстремума функции.

- 14. Наибольшее и наименьшее значение функции на отрезке.
- 15. Выпуклая и вогнутая функция. Достаточный признак выпуклости функции.
- 16. Необходимое и достаточное условие перегиба графика функции. Порядок исследования функции на выпуклость.
- 17. Асимптоты графика функции. Условие существования вертикальных, горизонтальных и наклонных асимптот функции.
- 18. Общая схема исследования функций и построения их графиков.
- 19. Первообразная и неопределённый интеграл. Геометрический смысл неопределённого интеграла. Связь между интегрированием и дифференцированием функции.
- 20. Арифметические свойства неопределённого интеграла (правила интегрирования).
- 21. Нахождение неопределённого интеграла методом непосредственного интегрирования, замены переменной и по частям.
- 22. Нахождение неопределённого интеграла от дробно-рациональной функции, метод неопределённых коэффициентов.
- 23. Задача о площади криволинейной трапеции. Понятие предела интегральных сумм. Определение определённого интеграла.
- 24. Условия существования определённого интеграла. Свойства определённого интеграла.
- 25. Понятие функции с переменным верхним пределом интегрирования. Свойства функции с переменным верхним пределом интегрирования. Формула Ньютона-Лейбница.
- 26. Вычисление определённых интегралов заменой переменной и по частям.
- 27. Геометрические приложения интеграла. Вычисление площадей плоских фигур и объёмов тел вращения.
- 28. Несобственные интегралы.
 - 29. Комплексные числа. Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме.
 - 30. Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме.
 - 31. Решение дифференциального уравнения, общие и частные решения. Задача Коши. Порядок дифференциального уравнения.
 - 32. Дифференциальные уравнения первого порядка. Геометрический смысл решения дифференциального уравнения. Виды дифференциальных уравнений первого порядка.
 - 33. Решение дифференциальных уравнений первого порядка с разделёнными и разделяющимися переменными.
 - 34. Однородная функция степени κ и нулевой степени. Однородные дифференциальные уравнения и их решение.
 - 35. Линейные дифференциальные уравнения первого порядка и их решение. Метод Бернулли.
 - 36. Уравнения Бернулли и метод их решения.
 - 37. Уравнения второго порядка, допускающие понижение порядка и их решения.
 - 38. Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами и их решение. Характеристическое уравнение.

Примерный перечень вопросов к зачету. 3 семестр.

Компетенция ОПК-1:

- 1. Определение функции нескольких переменных.
- 2. Определение функции двух переменных. Область определения и график функции двух переменных.
- 3. Частное и полное приращений функции двух переменных.
- 4. Частные производные функции двух переменных и их геометрический смысл.
- 5. Полный дифференциал функции двух переменных. Геометрический смысл дифференциала функции двух переменных в точке.
- 6. Точки экстремума функции двух переменных. Локальный и глобальный экстремум функции z = f(x, y).
- 7. Необходимое условие экстремума функции z = f(x, y). Критические точки и седловые точки функции z = f(x, y).
- 8. Достаточное условие экстремума функции z = f(x, y).
- 9. Частные производные второго порядка функции z = f(x, y).
- 10. Исследование функции z = f(x, y) на экстремум.
- 11. Задача о вычислении объёма цилиндрического тела. Определение двойного интеграла.
- 12. Свойства двойного интеграла. Правило вычисления двойного интеграла. Повторные интегралы.

- 13. Полярные координаты. Связь между полярной и прямоугольной системой координат. Выражение двойного интеграла в полярных координатах. Правило преобразования двойного интеграла к полярным координатам.
- 14. Определение тройного интеграла. Задача о вычислении массы неоднородного тела.
- 15. Свойства тройного интеграла.
- 16. Вычисление тройного интеграла путём сведения его к трёхкратному определённому интегралу.
- 17. Криволинейные интеграла первого рода. Свойства криволинейных интегралов первого рода.
- 18. Формулы и правила вычисления криволинейных интегралов первого рода.
- 19. Криволинейные интегралы второго рода. Свойства криволинейных интегралов второго рода.
- 20. Формулы и правила вычисления криволинейных интегралов второго рода.
- 21. Поверхностные интегралы первого рода. Свойства поверхностных интегралов первого рода.
- 22. Формулы и правила вычисления поверхностных интегралов первого рода.
- 23. Поверхностные интегралы второго рода. Свойства поверхностных интегралов второго рода.
- 24. Формулы и правила вычисления поверхностных интегралов второго рода.
- 25. Скалярные и векторные поля, их виды.
- 26. Поверхности и линии уровня скалярного поля.
- 27. Производная по направлению и формулы её вычисления.
- 28. Градиент скалярного поля и его физический смысл.
- 29. Свойства градиента и формулы его вычисления.
- 30. Поток векторного поля, его физический смысл, формулы вычисления.
- 31. Дивергенция векторного поля и её свойства.
- 32. Формула Остроградского-Гаусса и физический смысл дивергенции векторного поля.
- 33. Циркуляция векторного поля и формулы её вычисления.
- 34. Ротор векторного поля, его физический смысл, свойства и формулы вычисления.
- 35. Формула Стокса и область её применения.
- 36. Соленоидальные, потенциальные и гармонические поля.
- 37. Числовой ряд. Частичная сумма ряда. Предел частичных сумм ряда. Свойства сходящихся рядов.
- 38. Необходимый признак сходимости рядов и его следствие.
- 39. Первый достаточный признак сходимости положительных рядов (признак сравнения). «Эталонные» ряды. Правило применения достаточного признака сходимости положительных рядов.
- 40. Второй достаточный признак сходимости положительных рядов (второй признак сравнения или предельный признак сравнения). Правило применения предельного признака сравнения.
- 41. Признак Даламбера для исследования сходимости числовых рядов.
- 42. Радикальный и интегральный признак сходимости положительных рядов (признаки Коши).
- 43. Знакочередующиеся ряды. Признак сходимости знакочередующихся рядов (признак Лейбница).
- 44. Знакопеременные ряды. Достаточный признак сходимости знакопеременных рядов.
- 45. Абсолютно и условно сходящиеся ряды и их свойства.
- 46. Функциональные ряды. Точка и область сходимости функционального ряда. Частичная сумма функционального ряда.
- 47. Определение степенного ряда. Область сходимости и радиус сходимости степенного ряда.
- 48. Сходимость степенного ряда. Теорема Абеля.
- 49. Свойства степенных рядов.
- 50. Ряд Маклорена. Ряд Тейлора.
- 51. Понятие тригонометрического ряда. Ряд Фурье. Формулы для определения коэффициентов ряда Фурье.

Примерный перечень вопросов к экзамену. 4 семестр.

Компетенция ОПК-1:

- 1. 1. Случайное событие, испытание. Виды событий (достоверное, невозможное, случайное; совместные, несовместные, равновозможные, полная группа событий).
- 2. Вероятность события. Частота события. Классическое определение вероятности события.
- 3. Свойства вероятности события. Следствия из свойств вероятности события.
- 4. Статистическое определение вероятности события. Применимость её к определённому виду событий. Свойства.
- 5. Геометрическое определение вероятности события.

- 6. Формулы комбинаторики: перестановки, размещения, сочетания.
- 7. Алгебра событий: сумма, произведение и разность двух или нескольких событий. Противоположные события. Геометрическая интерпретация. Свойства операций над событиями.
- 8. Сложение вероятностей несовместных событий. Сумма вероятностей событий, образующих полную группу. Сумма вероятностей противоположных событий.
- 9. Безусловная и условная вероятность. Вероятность совместного появления двух и более событий.
- 10. Независимые события, попарно независимые, события, независимые в совокупности.
- 11. Вероятность появления двух и более независимых событий. Вероятность появления хотя бы одного события, независимого в совокупности.
- 12. Совместные события. Вероятность появления хотя бы одного из двух совместных событий.
- 13. Формула полной вероятности событий. Вероятность гипотез. Формула Байеса.
- 14. События, независимые относительно события А. Сложные и простые события. Схема Бернулли. Формула Бернулли.
- 15. Локальная теорема Лапласа. Интегральная теорема Лапласа.
- 16. Вероятность отклонения относительной частоты появления события от постоянной вероятности этого события в независимых испытаниях.
- 17. Случайная величина. Дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины. Бинарное (альтернативное) распределение дискретной случайной величины.
- 18. Биномиальное распределение дискретной случайной величины.
- 19. Распределение Пуассона.
- 20. Простейший поток событий.
- 21. Геометрическое распределение дискретной случайной величины.
- 22. Математическое ожидание дискретной случайной величины, её свойства и вероятностный смысл.
- 23. Математическое ожидание бинарного, биномиального, пуассоновского и геометрического распределения дискретной случайной величины.
- 24. Отклонение случайной величины от математического ожидания. Математическое ожидание отклонения.
- 25. Дисперсия. Свойства дисперсии. Формулы вычисления дисперсии.
- 26. Дисперсия бинарного, биномиального, пуассоновского и геометрического распределения дискретной случайной величины.
- 27. Среднее квадратичное отклонение. Среднее квадратичное отклонение суммы взаимно независимых случайных величин.
- 28. Среднее арифметическое одинаково распределённых взаимно независимых случайных величин. Числовые характеристики среднего арифметического отклонения случайных величин.
- 29. Закон больших чисел. Неравенство Чебышева. Терема Чебышева. Сущность и значение теоремы Чебышева для практики.
- 30. Теорема Бернулли и её вероятностный смысл.
- 31. Непрерывная случайная величина и функция её распределения (определение).
- 32. Свойства функции распределения и следствия из этих свойств.
- 33. График функции распределения и его исследование.
- 34. Плотность распределения вероятностей непрерывной случайной величины (определение, теорема). Свойства плотности распределения.
- 35. Числовые характеристики непрерывных случайных величин и их свойства.
- 36. Равномерное распределение вероятностей непрерывных случайных величин (определение, формула вычисления, график).
- 37. Числовые характеристики равномерно распределённой непрерывной случайной величины.
- 38. Нормальное распределение вероятностей непрерывных случайных величин (определение, формулы вычисления, график).
- 39. Правило «трёх сигм». Мода и медиана нормального распределения.
- 40. Экспоненциальное распределение вероятностей непрерывных случайных величин (определение, формулы вычисления, график).
- 41. Числовые характеристики показательного распределения.
- 42. Функция надёжности (определение, формулы вычисления).
- 43. Задачи математической статистики. Генеральная и выборочная совокупность. Объём совокупности. Повторная и бесповторная выборка. Репрезентативная выборка.
- 44. Варианты. Вариационный ряд. Частота и относительная частота количественного признака. Свойства частот. Статистическое распределение выборки.
- 45. Эмпирическая и теоретическая функция распределения. Полигон и гистограмма частот.
- 46. Требования к статистической оценке параметров распределения. Смещённая и несмещённая оценки. Эффективные и состоятельные оценки и их свойства.

- 47. Генеральная средняя и выборочная средняя.
- 48. Генеральная дисперсия и выборочная дисперсия. Исправленная дисперсия.
- 49. Точечные и интервальные оценки. Точность и надёжность оценки. Доверительный интервал с заданной надёжностью.
- 50. Доверительный интервал для оценки математического ожидания при известном среднем квадратическом отклонении. Классическая точность оценки.

Образец экзаменационного билета 1 семестр

	ДВГУПС		
	ПримИЖТ		
«Рассмотрено предметно-			
методической комиссией»	Экзаменационный билет № 2	«Утверждаю»	
«»20_ г.	по дисциплине	Зам. директора по УР	
Председатель	«Математика»	овин дирошора но т	
/Шестернина В.В.	для специальности/	Мелешко Л.А.	
	направления подготовки	Мелешко Л.А.	
1 семестр 20_/20_ уч.г.	23.05.04 «Эксплуатация желез-	« » 20_ г.	
Экзаменатор	<u>ных дорог»</u>	<u>"</u>	
доцент Квашко Л.П.			
1. Уравнение плоскости, проходящей через данную точку перпендикулярно данно-			
му вектору. ОПК-1			
2. Найти область определ	ения функции:		
a) $y = \sqrt{4 - x^2} + \frac{1}{2}$; 6) y	$y = lg(3x - 1) + 2lg(x + 1);$ $B)y = \frac{2x}{2}$	² +3 	
a) $y=\sqrt{4-x^2}+\frac{1}{x}$; б) $y=lg(3x-1)+2lg(x+1)$; в) $y=\frac{2x^2+3}{x-\sqrt{x^2-4}}$. ОПК-1 3. Найти пределы функций $\lim_{x\to\infty}\frac{2x^3+7x^2-2}{6x^3-4x+3}$; $\lim_{x\to0}\frac{2x}{\sqrt{10+x}-\sqrt{10-x}}$ ОПК-1			
з. наити пределы функци	$ \lim_{x \to \infty} \frac{1}{6x^3 - 4x + 3}; \lim_{x \to 0} \frac{1}{\sqrt{10 + x} - \sqrt{10 - x}} $	= UHK-1 x	

Образец экзаменационного билета 4 семестр

	ДВГУПС ПримИЖТ	
«Рассмотрено предметно- методической комиссией» «»20_ г.	Экзаменационный билет № 3 по дисциплине «Математика»	«Утверждаю» Зам. директора по УР
Председатель/Шестернина В.В. 4 семестр 20_/20_ уч.г. Экзаменатор доцент Квашко Л.П.	для специальности/ направления подготовки <u>23.05.04 «Эксплуатация железных дорог»</u>	Мелешко Л.А. «»20_ г.
Свойства вероятности события. Следствия из свойств вероятности события. ОПК-1		
· · · · · · · · · · · · · · · · · · ·	нное отклонение. Среднее квадрат иых случайных величин. ОПК-1	ичное отклонение суммы
	нство Чебышева, оценить вероятноесли $D(X) = 0,001$. ОПК-1	ость того, что

3. Тестовые задания. Оценка по результатам тестирования.

3.1. Примерные задания теста

Задание 1. (ОПК-1)

Укажите значение определителя.

Определитель $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 1 \\ -1 & 1 & 1 \end{vmatrix}$ равен:

Задание 2. (ОПК-1)

Матрица С=АВ. Зная размерность матриц А и В, укажите размерность матрицы С.

Задание 3. (ОПК-1)

Выберите верный вариант ответа.

Решением системы
$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ 2x_1 - x_2 + x_3 = 2 \end{cases}$$
 является тройка чисел:
$$3x_1 + x_2 + x_3 = 5$$

3a	дание 4. (ОПК-1)
\checkmark	(1,1,1)
	(-1,1,3)
	(2,1,0)

Выберите верный вариант ответа.

Найти четвертую производную для функции и $y = 5x^4 + 4x^3 + 3x^2 + 2x + 1$.

Наити четвертую производную для функции и $y = 5x + 4x^2 + 5x + 2x + 1$
☑ 5!
☑ 120
\square 0
\Box 4!
\square 24

Задание 5. (ОПК-1)

Выберите верный вариант ответа.

Найти точку максимума функции $y = x^3 + 3x^2 - 4$.

Наити точку максимума функции $y = x^2 + 3x^2 - 3$	-4.
☑ -2	
\square 0	
□ 1	
\square 2	
□ -1	

Задание 6. (ОПК-1)

Соответствие между интегралами и их первообразными:

$$\int \frac{x}{x+1} dx$$

$$x - \ln|x+1| + c$$

$$\int \frac{x}{x^2 - 1} dx$$

$$\frac{1}{2} \ln|x^2 - 1| + c$$

$$\int \frac{x^2 + 1}{x} dx$$

$$\int \frac{dx}{x^2 - 1}$$

$$\frac{x^2}{2} + \ln|x| + c$$

$$\frac{1}{2}\ln|x-1| - \frac{1}{2}\ln|x+1| + c$$

$$\frac{1}{2}\ln|x| - \frac{1}{2}\ln|x+1| + c$$

Задание 7. (ОПК-1)

Выберите верные варианты ответа. Интегралы, "берущиеся" по частям:

$$\subseteq \int x \ln x dx$$

$$\Box \int \frac{arctgx}{1+x^2} dx$$

$$\Box \int \sqrt{2x+1} dx$$

$$\Box \int (x+1)\cos(x^2+2)dx$$

Задание 8. (ОПК-1)

Выберите верный вариант ответа.

В неопределенном интеграле $\int \frac{\sqrt{1+2\ln x}}{x} dx$ введена новая переменная $t=1+2\ln x$.

Тогда интеграл принимает вид:

$$\Box 2\int \frac{dt}{\sqrt{t}}$$

$$\Box$$
 $2\int \sqrt{t}dt$

$$\Box \int \sqrt{t}dt$$

Задание 9. (ОПК-1)

Выберите верный вариант ответа.

Пусть u = u(x) и v = v(x), тогда формула интегрирования по частям имеет вид:

$$\Box \int u dv = u dv - \int v du$$

$$\Box \int u dv = uv + \int v du$$

$$\Box \int v du = uv + \int u dv$$

$$\Box \int u dv = u du - \int v dv$$

Задание 10. (ОПК-1)

Выберите верный вариант ответа.

Интеграл $\int (x+1)\sin(2x-5)dx$ равен:

$$\sqrt{-\frac{1}{2}}(x+1)\cos(2x-5) + \frac{1}{4}\sin(2x-5) + C$$

$$\Box \left(\frac{x^2}{2} + x\right) \sin(2x - 5) - \frac{1}{4}\cos(2x - 5) + C$$

$$\Box -\frac{1}{2}\cos(2x-5) + \frac{1}{4}(x+1)\sin(2x-5) + C$$

$$\Box -2(x+1)\cos(2x-5) + 4\sin(2x-5) + C$$

Задание 11. (ОПК-1)

Выберите верные варианты ответа.

Определенный интеграл обладает свойствами:

$$\Box \int_{a}^{b} f(x)dx = f(b) - f(a)$$

Задание 12. (ОПК-1)

Выберите верный вариант ответа.

При вычислении частной производной функции z=f(x,y) по переменной у мы фиксируем:

- □ переменную у
- ☑ переменную х
- □ переменные х и у
- □ переменную z

Задание 13. (ОПК-1)

Выберите верный вариант ответа.

Частная производная u'_x функции $u = x^2 - 3xy + y^3$ имеет вид :

$$\Box u'_{x} = 2x - 3y + y^{2}$$

$$\Box u'_{x} = 2x - 3xy$$

$$\Box u'_{x} = 3y^{2} - 3x + 2y$$

$$\square u'_x = 2x - 3y$$

Задание 14. (ОПК-1)

Соответствие между комплексным выражением и его значением, если z = -3+4i:

-3 Rez

 $\overline{Im}z$

5 |z|

-3-4i

Z.

Задание 15. (ОПК-1)

Выберите верный вариант ответа.

Если z = -1 + i, то $\arg z$ равен:

$$\Box$$
 $-\frac{\pi}{4}$

$$\Box \frac{3}{4}\pi + 2k\pi$$

$$\Box -\frac{3}{4}\pi$$

Задание 16. (ОПК-1)

Выберите верный вариант ответа.

Для функции $\omega = (z - i) \text{Re} z$ указать Re ω , Im ω :

$$\boxtimes x^2$$
, $(y-1)x$

$$\Box x^2$$
, $(y-1)$

$$\Box x^2, -y$$

$$\Box$$
 xy, ixy

Задание 17. (ОПК-1)

Выберите верный вариант ответа.

Если
$$z = \frac{1-2i}{i^2}$$
, то Re z равна:

- □ -1
- \Box 1
- \square -2 \square 2

Задание 18. (ОПК-1)

Выберите верный вариант ответа.

Если
$$z = \frac{2i^2}{1-i}$$
, то Imz равна:

- **✓** -1
- \Box 1
- \square 2
- □ -2

Задание 19. (ОПК-1)

Выберите верный вариант ответа.

Условия Коши-Римана для функции f(z) = u(x, y) + iv(x, y):

$$\Box \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y}$$

$$\Box \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x}$$

$$\Box \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$

Задание 12. (ОПК-1)

Выберите верные варианты ответа.

Особые точки функции $f(z) = \frac{z}{z^2 + 4}$:

- **☑** 2i
- ✓ -2i
- \square 2 \square -2
- □ нет особых точек

Задание 21. (ОПК-1)

Выберите верный вариант ответа.

Дифференциальное уравнение $y' - \frac{2y}{x} = x^2 + 1$ является:

- ☑ линейным неоднородным дифференциальным уравнением
- □ уравнением Бернулли
- □ однородным дифференциальным уравнением
- □ дифференциальным уравнением с разделяющимися переменными

Задание 22. (ОПК-1)

Соответствие между порядком дифференциального уравнения и уравнением:

ДУ третьего порядка

$$y' + 2y''' = 8x$$

ДУ первого порядка

$$y + (y')^3 = 2x^2$$

ДУ второго порядка

$$xd^2y - 3ydx^2 = 0$$

$$y^2 + \frac{2y}{x^3} = 2x^2$$

Задание 23. (ОПК-1)

Последовательность решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами:

- **1:** Составляем характеристическое уравнение $k^2 + a_1k + a_2 = 0$.
- 2: Решаем полученное квадратное уравнение.
- 3: В зависимости от корней уравнения находим частные решения уравнения.
- **4:** Находим решение ЛОДУ второго порядка в виде $y=C_1y_1+C_2y_2$.

Задание 24. (ОПК-1)

Выберите верный вариант ответа.

Общее решение ЛОДУ второго порядка y'' - 4y' + 4y = 0имеет вид:

$$\Box y = C_1 + C_2 x e^{2x}$$

$\Box y = C_1 + C_2 e^{2x}$	
$\Box y = C_1 x + C_2 e^{2x}$	
$\Box y = (C_1 + C_2 x)e^{4x}$	
Задание 25. (ОПК-1)	
Укажите значение предела.	
Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n$	=
Правильные варианты ответа: 0; н	нулю; ноль;
Задание 26. (ОПК-1)	
Выберите верный вариант ответа. Сходящиеся ряды:	
$\square \sum_{n=1}^{\infty} \left(\frac{3n+1}{n} \right)^n$	
$ \bigvee \sum_{n=1}^{\infty} \left(\frac{n}{3n+1} \right)^n $	
$\square \sum_{n=1}^{\infty} 2^n$	
Задание 27. (ОПК-1)	
	событиями и типом этих событий в испытании: подбрасывается игральная
КОСТЬ	D
Достоверное событие Невозможное событие	Выпало не более 6 очков Выпало больше 6 очков
	Выпало 3 очка
2 - 2 20 (OHK 1)	Выпало не менее 6 очков
Задание 28. (ОПК-1)	событиями и их вероятностями в испытании: из урны в которой 4 черных и б
белых шаров вынимают два шара.	coobitanina a ra bepontitoernina b neithirainna. As ypithi b koropon i lepithia a c
Оба шара белые	1/3
Один белый шар и один черный Оба шара черные	8/15 2/15
Ооа шара черные	2/13 4/15
Задание 29. (ОПК-1)	,
Вставить пропущенное число	
Число, определяющее вероятность <i>Правильные варианты ответа:</i> 1;	достоверного события равно
Задание 30. (ОПК-1)	
Выбрать правильный ответ Если Р(А)=0,65, то вероятность про	отивоположного события равна:
☑ 0.35 □ 0.5	
□ -0.65	
□ 1	
Задание 31. (ОПК-1)	
Выбрать правильный ответ	
*	етной" в испытании: из урны, в которой 5 красных, 4 синих и 6 белых шаров
наудачу берут один шар равна: ☑ 3/5	
\square 4/45	

□ 2/5 □ 2/15
Задание 32. (ОПК-1)
Выбрать правильный ответ
Функция распред
$\begin{bmatrix} 0, & x \leq 1 \end{bmatrix}$
$(0.3, 1 < x \le 2)$
$F(x) = \begin{cases} 0.7, & 2 < x \le 3 \end{cases}$
$F(x) = \begin{cases} 0, & x \le 1 \\ 0.3, & 1 < x \le 2 \\ 0.7, & 2 < x \le 3 \\ 1, & x > 3 \end{cases}$
(1, x>3)

ел**е**ния Д.С.В. имеетвид

Тогда вероятность $P(2 \le X \le 4)$ равна:

- **☑** 0.7 \square 0.4
- \square 0.3
- \Box 1

Задание 33. (ОПК-1)

Соответствие между законом распределения Н.С.В. и формулой ее функции плотности распределения

Равномерный закон распределения

 $f(x) = \frac{1}{b-a}, \quad a \le x \le b$

Показательный закон распределения

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0, \, \lambda > 0$$

Нормальный закон распределения

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0, \, \lambda > 0$$
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-a)^2/2\sigma^2}$$

$$f(x) = \frac{x-a}{b-a}, \quad a \le x \le b$$

Задание 34. (ОПК-1)

Соответствие между параметрами генеральной совокупности и их несмещенными точечными оценками

M(X)D(X) S^2 S $\sigma(X)$ D_{o}

Задание 35. (ОПК-1)

Выбрать правильный ответ

Дано эмпиричесюе распредел**е**ние выборки $\frac{x_i: -2 \ 0 \ 2}{n_i: \ 10 \ 20 \ 20}$

Тогда \bar{x} равно:

- $\sqrt{2}$ 2/5
- \square 2/3
- □ 1/5
- \Box 0

Задание 36. (ОПК-1)

Выбрать правильный ответ

Дано эмпирическое распределение выборки $\frac{x_i: -2 \ 0 \ 2}{n_i: \ 10 \ 20 \ 20}$

Tогда $D_{\scriptscriptstyle \! B}$ равно:

- **☑** 56/25
- \square 12/5
- □ 64/25
- \square 2

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

3.2. Соответствие между бальной и рейтинговой системами оценивания знаний, умений, навыков и (или) опыта деятельности, устанавливается посредством следующей таблицы:

Объект оценки	Показатели оценивания результатов обучения	Оценка	Уровень результатов обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

	Содержание шкалы оценивания					
Элементы оценивания	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично		
	Не зачтено	Зачтено	Зачтено	Зачтено		
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам	Значительные по- грешности	Незначительные погрешности	Полное соответствие		
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию	Незначительное несоответствие критерию	Соответствие критерию при ответе на все вопросы.		
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.).	Имеют место не- существенные упущения и незна- ние отдельных (единичных) работ из числа обяза- тельной литерату- ры.	Полное соответ- ствие данному кри- терию ответов на все вопросы.		
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	Умение связать во- просы теории и прак- тики проявляется ред- ко	Умение связать вопросы теории и практики в основном проявляется.	Полное соответ- ствие данному кри- терию. Способ- ность интегриро- вать знания и при- влекать сведения из различных научных сфер		
Качество ответов на дополнительные во- просы	На все дополнительные вопросы преподавателя даны неверные ответы.	Ответы на большую часть дополнительных вопросов преподавателя даны неверно.	1. Даны неполные ответы на дополнительные вопросы преподавателя. 2. Дан один неверный ответ на дополнительные вопросы преподавателя.	Даны верные ответы на все дополнительные вопросы преподавателя.		

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.